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Memory interfacing is an essential topic for digital system design.  In fact the 
among silicon area devoted to memory in a typical digital embedded system 
or a computer system is substantial.  For example, in a mobile phone, the 
number of transistors devoted to memory is many times more than those 
used for computation.  For the second year course, I will only focus on 
interfacing to static memory, known as RAM (Random Access Memory) or 
ROM (Read-Only Memory).  There are other types of memory such as 
dynamic memory (DRAM), Synchronous DRAM (SDRAM) and flash memory 
(Flash RAM) which will not be covered on this course.
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This slide shows a typical organisation inside a RAM chip.  Memory cells are 
usually organised in the form of a  2-D array of RAM cells.  These are 
accessed first in a row, then in a column.  The address bus is divided into two 
components, the row address (8-bit in the example here) and the column 
address (4-bit in this example).  There is a decode to translate the 8-bit row 
address into one-hot outputs in order to specify which row is being accessed. 
Only ONE ROW will be enable at any one time (hence one-hot).  

The second part of the address (normally the less significant bits) is used as 
select signal into the output mux. This is because when memory is accessed, 
they are normally read or written in a sequence.  Using LSB for column 
decoding means that one stays on the same row of memory as much as 
possible.  Staying in the same row uses significantly lower energy than 
switching between rows in memory accesses. 
In the example here, the 4-bit column address is used to select from a 16-to-1 
mux to provide the correct location in memory to access.  There are 16 
identical blocks, each providing one-bit of the data output.

The output enable signal OE allows the selected data value be driven on the 
data bus.
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Here is a 8K x 8 static RAM chip and its associated digital signals.  The 13-bit 
address bus A12:0, the 8-bit data bus D7:0 are mandatory.  There are three 
more control signals:  Output Enable OE which we have seen before, Chip 
Enable CE which is used to address or select this particular memory chip 
(hence the name), and finally the WRITE ENABLE signal WE, which, when 
set high, indicates that you are writing to the RAM chip, and is normally low 
(i.e. reading).

Note that the data bus has an inverted triangle sign, indicating that this is a 
tri-state bus.  This means that the pin could be an input pin, output pin, or an 
open-circuit pin (i.e. not connected to anything – we call the signal floating).  
The truth table shown here specifies the behaviour of the data bus in one of 
the three possible states.
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For a 8k x 8 RAM, there are 8 data bits, and therefore 8 separate 1-bit arrays.  
Let us assume that each data bit array is organised as a 256 rows  x 32 
column (=8192) of memory cells.  Eight such array are placed next to each 
other to form the 8 data bits required.  This makes the memory chip roughly 
square (which is generally desirable).  
You can think of the row decoder and the column selector driven by the 13-bit 
address as a 8192 way multiplexer, selecting one of 8192 cells organised as 
256 x 32, to be accessed.    
The simplified circuit of each memory cell shown here consists of two 
inverters and two switches is a schematic of the read-write circuit.  When 
reading from the cell, A12:0 select one of 8192 cells to route its signal via the 
right inverter to Dn.  Now Dn is an output pin.  This only happens if CE*OE* 
!WR = 1 (i.e. asserting CE and OE, but not asserting WR). 
When writing to the memory cell, the right switch is open, Dn is an input pin 
driving the left hand inverter and the output switch from that inverter is closed 
because both CE and WR are asserted.
Some memory chips have separate Din and Dout pins, but that’s expensive 
on pins and is not particularly common nowadays.
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Here is a slide showing a generic interfacing between a microprocessor and a 
memory sub-system.  We assume that we use a 16-bit address bus and an 8-
bit data bus.  The control signals go between the two to control the transfer of 
information, and is in general governed by the microprocessor which acts as 
the “master”.
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While we show memory as a block, in a real system, the memory address 
space is divided into many different partitions.  Here we use ‘$’ (instead of 
16’hxxxx) to indicate that the addresses are hexadecimal numbers. The left 
hand diagram shows the memory being partitioned into 32k of RAM, 16k of 
ROM and 4k space for input/output devices.
A design needs to take the upper bits of the address bus and decode 
these bits into enable signals for the three different partitions.  In this case, 
we can see that we only need to decode A15:12 according to the Boolean 
equations shown here.  What about A11:0?  These are the address bits used 
inside the RAM, ROM and input/output modules to select particular locations.
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Selecting which memory sub-system and therefore which memory chip to 
enable is the job of the address decoder circuit.  This circuit takes the upper 
bits of the address bus, and produce enable signals for RAM, ROM and 
INOUTx for a particular I/O device.  
In the previous slide, we showed that the input/output occupies 4k of memory 
space. This is uncommon.  Typically an I/O device may take up, say, 4 
memory locations.  
In this example, INOUTx occupies only the address space $F574 - $F577 
(hexadecimal format) , i.e. 4 locations.  Therefore we need to decode lots of 
address signals: A15:2.
Can you work out the Boolean equations for the address decoder shown 
here?
The ROM CE signal is another challenge. The ROM is enable if the address 
A15:A12 falls between the range 4’b1011 and 4’b1110.  You should prove for 
yourself that the Boolean equation to decode the address for the ROM is as 
shown here.
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In addition to the address decoder circuit, we need to provide the control 
signals from the microprocessor to the memory chips.  Here we assume there 
exists at least two control signals from the microprocessor: MCLOCK which is 
memory clock signal (which may be different from the system clock signal 
CLOCK), and a WRITE signal, which is high when writing to memory, but low 
otherwise.
The interaction between the microprocessor and memory can be separated 
into two types of transactions: a Read Cycle and a Write Cycle.
During Read Cycle, the microprocessor asserts the address A15:0 and the 
control signals MCLOCK and WRITE.  Shortly after the beginning of the Read 
Cycle, the microprocessor must STOP driving the data bus D7:0, and on the 
second half of the cycle, we assume that memory will then provide the data 
for the microprocessor to read.  Reading is actually performed at the end of 
the Read Cycle, on the falling edge of MCLOCK.  Note that I use red colour to 
indicate the action of the microprocessor on the data bus, and blue colour for 
the action by the memory chip on the data bus.
During a Write Cycle, the microprocessor drives everything.  Writing also 
occurs on the falling edge of MCLOCK in our case.  (Note that other system 
may have a different protocol than the one shown here.)
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This slide shows the control circuit used to interface the 
microprocessor to the 32k x 8 RAM chip.  
Chip Enable (CE) is driven by the output from the address decoder, 
which we have considered in an earlier slide.  Remember the colour 
code I am using: RED driven by the microprocessor, BLUE driven by 
memory.
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The MAX10 FPGA device we use in DE10-Lite board has nearly 50,000 
Logic Elements, each consisting of a 4-input Lookup Table (4-LUT) and a 
D-FF.

There are also blocks of memory (shown in purple) and multipliers (in 
brown).  Note that the internal structure follows the traditional array style 
with rows and columns.  Each column has the SAME type of circuit (i.e. all 
LEs or all multipliers).  For our MAX 10 chip, there are 182 9-bit memory 
blocks, and 144 18-bit x 18-bit hardware multipliers.

On the edge are lots of programmable I/Os. These can be configured for 
different logic standards, as input or output, have different current drive 
strengths and slew rates.

There are four phase-locked loops (PLLs) used for generating internal 
clock signals.

There is a analogue-to-digital converter block for interfacing to analogue 
signals. However, we are not using this in our Lab experiments.

The internal flash memory blocks are used to store program codes for soft 
32-bit processors called Nios II. Unlike some other FPGAs with inbuilt 
ARM process, which is a hard block, MAX 10’s  Nios II processor is 
implemented with LEs.  If it is not needed, the configurable logic can be 
used for other purposes. 
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Each of these blocks (known as M9K) can be configured with different depth 
and data width as shown in the able above.

Even more importantly, the can also be configured to act as conventional 
single-port memory, or simple dual-port with one port for read and one port 
for write.  They can also be configure as true dual-port RAM, where both 
ports can be read or write ports.

Further, they can be made to be true dual-port, both ports being read/write 
ports, or as a shift register, a ROM or a first-in-first-out buffer (FIFO).
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As you have seen in the VERI experiment, if the memory block is a ROM (or 
even as a RAM), its content can be configured via a memory initialization file 
.mif.  The format of the file is shown here.    Typing the contents of a 1024 
ROM module by hand is silly and impractical.  I wrote two versions of a 
simple programme to generate this .mif file, one in Matlab and one in Python. 
Below is the code for the Matlab version.
The ROM is produced using the IP Catalog tool.  Here is a 1024 x 10 bit 
ROM generated with all input and output registered and synchronised with 
the clock signal.
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In the experiment, you have already implemented a sine wave generator 
using the ROM to store one cycle of a sine wave.  The counter is used to 
advance the phase of the sine wave, which is specified as the address X of 
the ROM.  The content of the ROM, y= F(x) is the content of the ROM and is 
the generated wave form.  Instead  of storing a sine wave, you can easily 
store any other signal (such as a voice or music segment).
In order implement a variable frequency sinewave, you could modify the 
address counter so that it is goes up not only by 1 count for each clock cycle, 
but by N. For example if N is 2, then the address counter will skip every other 
sample in the ROM and therefore the generated sinewave will be at twice the 
signal frequency.
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Here is a generated simple dual-port  memory with ALL possible signals included.  
The meaning of all the signals are self explanatory.
A simple dual-port memory has one port for read an done for write. There are 
however restrictions on the number of bits in each data word, depending on 
the configuration of the memory.  For example, if one want to use block 
memory as simple dual-port RAM, the data width are limited to those show in 
the slide. There is no option use a 10-bit memory – we have to design using 
only 9-bit data!
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Here is an example of using the MegaWizard manager tool in Quartus.  
We are producing a 1-port RAM with 8k x 9 bits, all signals are 
clocked.  The output q[8:0] is however NOT clocked in this case.
The generator produces a instantion template file which defines the 
interface signal to the generated block as shown.  Remember you must 
tick the Verilog HDL radio button for this to be produced. You may copy 
and paste this template to your top-level design to instantiate this RAM 
block.



In Lab 6 of the practical for this module, you would have used a FIFO 
to implement an echo synthesizer.  The action of a FIFO is shown in 
the diagram above. 
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Here is a generic block diagram of a FIFO with its typical interface 
signals.  FIFO is a form of queue.  Internally there typically two 
counters, one keeping track of the read address (or read pointer) and 
another counter keeping track of the write address (write pointer).  
There needs to be status signals such as FULL, which is asserted if 
the FIFO is completely filled and writing any more words to it will 
destroy stored data, or EMPTY, which signifies that there are no data 
left to read.
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FIFO can be generated using the IP Catalog manager tool.  Shown here is an 
example of a 32 word x 8 bit FIFO.


